Tetrahedron Letters 49 (2008) 6529-6532

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet



# Copper-catalyzed intramolecular hydroamination of allenylamines to 3-pyrrolines or 2-alkenylpyrrolidines

Akiko Tsuhako, Daisuke Oikawa, Kazushi Sakai, Sentaro Okamoto\*

Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

### ARTICLE INFO

Article history: Received 26 July 2008 Revised 28 August 2008 Accepted 1 September 2008 Available online 3 September 2008

## ABSTRACT

Copper salts, such as CuCl, CuI, CuCl<sub>2</sub> and Cu(OTf)<sub>2</sub>, were used to catalyze the intramolecular hydroamination of allenylamines to provide the corresponding 3-pyrrolines or 2-alkenylpyrrolidines. © 2008 Elsevier Ltd. All rights reserved.

Cyclization of allenylamines **1** gives *N*-heterocycles **2**, via an *endo*-hydroamination pathway, or **3**, via an *exo*-hydroamination pathway.<sup>1</sup> Many means to catalyze these transformations have been developed with metal salts or complexes of Ti, Zr,<sup>3</sup> lanthanides,<sup>3</sup> Pd,<sup>4</sup> Ag,<sup>5</sup> Au<sup>6</sup> and Hg<sup>7</sup> (Scheme 1).<sup>8</sup> Herein disclosed is our finding that copper (I) and (II) salts, such as CuCl, CuBr, CuI, CuCl<sub>2</sub> and Cu(OTf)<sub>2</sub> [OTf = OSO<sub>2</sub>CF<sub>3</sub>], can effectively catalyze the transformation of **1** to 3-pyrrolines **2** (*n* = 0) or 2-alkenylpyrrolidines **3** (*n* = 2).<sup>9</sup>

The results for the reaction of  $\gamma$ -allenylamine **1a** and  $\alpha$ -allenylamine **1b** with various copper salts are summarized in entries 1–14 of Table 1. Entries 1–6 show that, except for CuF<sub>2</sub>, a variety of copper (I) and (II) salts catalyzed the intramolecular hydroamination of **1a** in an *exo*-cyclization fashion to provide 2-vinylpyrrolidine **3a** in excellent yields. Similarly, **1b** was effectively cyclized, but in an *endo*-fashion, to 3-pyrroline **2b** in good to excellent yields (entries 11–14). The reaction with copper catalysts was faster than that with AuCl<sub>3</sub> but slower than that with AgOTf under the same conditions (entries 9 and 10). Introduction of ligands, such as diphosphine (dppe) and *N*-heterocyclic carbene, to the reaction with copper salts did not result in any conversion of the substrate (entries 7 and 8). Among the copper salts that were effective to the reaction, Cu(OTf)<sub>2</sub> catalyzed at the fastest rate. As revealed by entries 15–18, secondary as well as primary amines (**1f**) were



Scheme 1. Transformation of allenylamines to N-heterocycles.

\* Corresponding author. Tel.: +81 45 481 5661; fax: +81 45 413 9770. *E-mail address:* okamos10@kanagawa-u.ac.jp (S. Okamoto).

0040-4039/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.003

# Table 1

Copper-catalyzed intramolecular hydroamination of allenylamines



<sup>a</sup> Cul, CuCl or Cu(OTf)<sub>2</sub>.

<sup>b</sup> 1,2-Bis(diphenylphosphino)ethane.

<sup>c</sup> N,N'-Di(2,4,6-trimethylphenyl)imidazol-2-ylidene copper (I) chloride.

<sup>d</sup> 15 h.

smoothly cyclized in the presence of copper salts, whereas all amides tested (**1c**, **1d** and **1e**) did not react in this system at all.

Other representative examples for the transformation are illustrated in Table 2.<sup>10,11</sup> Substrates having an allene-substituent, **1g**, **1h** and **1i**, were cyclized in the presence of  $Cu(OTf)_2$  to the corresponding pyrrolidine **3g** and 3-pyrrolines **2h** and **2i**, respectively, in good yields (entries 1–5). Thus, the reaction of **1g** gave 88% of 2-penten-1-ylpyrrolidine **3g** with >97% *E* of olefin geometry. Cyclization of **1h** and **1i** with Cul or Cu(OTf)<sub>2</sub> catalyst afforded the corresponding 2,5-disubstituted pyrrolidines with similar diaste-

### Table 2

Other representative examples

reomeric ratios to those of the substrates (entries 2–5). The results for the cyclization of **1j** (entries 6–8) indicate that no epimerization at the amine  $\alpha$  position(s) occurred under the reaction conditions.  $\beta$ -Substituted  $\alpha$ -allenylamine **1k** also smoothly reacted to give 2,3disubstituted 3-pyrroline **2k** in excellent yield (entry 9). It was observed again that the Cu(OTf)<sub>2</sub>-catalyzed reaction was much faster than the reaction with AuCl<sub>3</sub> (entries 4 and 10). The catalysis could be applied to the cyclization of  $\alpha$ -allenylamine having a secondary



<sup>a</sup> Determined by <sup>1</sup>H NMR analysis.

<sup>b</sup> Anti(dl) product was major.

<sup>c</sup> After the reaction for 2 days, 81% of **1n** was recovered.



Figure 1. Possibility for the reaction mechanism.

*N*-substituent (entry 11). The reaction of  $\delta$ -allenylamines **1n** with Cu(OTf)<sub>2</sub> catalyst proceeded slowly to provide 6-*exo*-cyclization product piperidine **3n** in 17% yield after 24 h, where 83% of **1n** was recovered. Meanwhile,  $\beta$ -allenylamine **1m** reacted faster than **1n**, but resulted in the formation of a complex mixture.

Based on the alkene geometry of the product, reaction mechanisms for the *exo*-cyclization, via the metal-catalyzed intramolecular hydroamination of allenylamines, have been proposed in the literatures involving an *anti*-aminometallation pathway through a metal-coordinated allenic species **a** or **b** (Fig. 1, (i), in which **a** is disfavour due to steric repulsion between R and NHR' groups) and an *syn*-aminometallation process through a metal amide intermediate **c** (Fig. 1, (ii)).<sup>1–8</sup> As revealed from the results of the transformation of **1g**, the present copper-catalyzed reaction gave **3g** with high selectivity for the *E*-olefin geometry and, therefore, an *anti*-aminometallation pathway (i) may be postulated for the mechanism.<sup>12</sup>

In summary, we have demonstrated that the intramolecular hydroamination of allenylamines to 3-pyrolines or 2-alkenylpyrrolidines is effectively catalyzed by various copper salts. These salts, which exhibited good catalytic reactivity, are inexpensive and are relatively less-toxic, both of which are characteristics that should be synthetically useful especially for application to a large-scale process. More details concerning the stereospecificity of the reaction and its application to asymmetric processes are underway.

## Acknowledgements

This study was partially supported by the Scientific Frontier Research Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

## **References and notes**

- (a) Modern Allen e Chemistry: Volume 2 III Reaction of Allenes; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VHC: Weinheim, 2004; (b) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003, 935; (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067; (d) Frederickson, M.; Grigg, R. Org. Prep. Proced. Int. 1997, 29, 63; (e) Tamaru, Y.; Kimura, M. Synlett 1997, 749; (f) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
- Ti, Zr: (a) Tobisch, S. Dalton Trans. 2006, 4277; (b) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956; (c) Ackermann, L.; Bergman, R.

G. Org. Lett. 2002, 4, 1475; (d) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed. 2001, 40, 4632; Intermolecular reaction: (e) Ayinla, R. O.; Schafer, L. L. Inorg. Chim. Acta 2006, 359, 3097; (f) Hoover, J. M.; Peterson, J. R.; Pikul, J. H.; Johnson, A. R. Organometallics 2004, 23, 4614; (g) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923; (h) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708.

- Lanthanides: (a) Tobisch, S. Chem. Eur. J. 2005, 12, 2520; (b) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878; (c) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633; (d) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949; (e) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871.
- (a) Pd: L. M. Lutete, I. Kadota, Y. Yamamoto 2004 126 1622.; (b) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943; (c) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3, 3855; (d) Kang, S.-K.; Kim, K.-J. Org. Lett. 2001, 3, 511; (e) Karstens, W. F. J.; Klomp, D.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron 2001, 57, 5123; (f) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421; (h) Ha, J. D.; Cha, J. K. J. Am. Chem. Soc. 1999, 121, 10012; Intermolecular reaction: (i) Al-Masum, M.; Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1997, 38, 6071; (j) Karstens, W. F. J.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron Lett. 1997, 35, 6257; (k) Besson, L.; Goré, J.; Cazzes, B. Tetrahedron Lett. 1995, 36, 3867; (l) Davis, I. W.; Scopes, D. I. C.; Gallagher, T. Synlett 1993, 85; (m) Kimura, M.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1992, 57, 6377; (n) Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 4257.
- Ag: (a) Dieter, R. K.; Chen, N.; Gore, V. K. J. Org. Chem. 2006, 71, 8755; (b) Amombo, M. O.; Hausherr, A.; Reissig, H.-U. Synlett 1999, 1871; (c) Davis, I. W.; Gallagher, T.; Lamont, R. B.; Scopes, I. C. J. Chem. Soc., Chem. Commun. 1992, 335; (d) Kinsman, R.; Lathbury, D.; Vernon, P.; Gallagher, T. J. Chem. Soc., Chem. Commun. 1987, 243.
- Au: (a) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452; (b) Zhang, Z.; Liu, G.; Kinder, R. E.; Han, Z.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066; (c) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634; (d) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3314; (e) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.
- Hg Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molly, K. C.; Gallagher, T. J. Chem. Soc., Chem. Commun. 1989, 1073.
- Pd-catalyzed bromoamination of allenes: (a) Jonasson, C.; Horváth, A.; Väckvall, J.-E. J. Am. Chem. Soc. 2000, 122, 9600; Ru-catalyzed carboamination of allens: (b) Trost, B. M.; Pinkerton, A. B.; Kremzow, D. J. Am. Chem. Soc. 2000, 122, 12007; Ta-catalyzed intermolecular hydroamination of allenes: (c) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519.
- Cu-catalyzed cyclization of iminoallenes to pyrroles has been reported, see: (a) Nedolya, N. A.; Brandsma, L.; Tarasova, O. A.; Verkruijsse, H. D.; Trofimov, B. A. *Tetrahedron Lett.* **1998**, *39*, 2409; (b) Brandsma, L.; Nedolya, N. A.; Brandsma, L.; Tplmachev, S. V. Chem. Heterocycl. Compd. **2002**, *38*, 745; (c) Brandsma, L.; Nedolya, N. A.; Tplmachev, S. V. Chem. Heterocycl. Compd. **2002**, *38*, 54; (d) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. **2001**, *123*, 2074. Cucatalyzed intermolecular hydroaminaton of active alkenes has been reported, see:; (e) Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. **2006**, *8*, 3561; (f) Munro-Leighton, C.; Delp, S. A.; Blue, E. D.; Gunnoe, T. B. Organometallics **2007**, *26*, 1433. For Cu-catalyzed hydroamination of multiple bonds, see:; (g) Prior, A. M.; Robinson, R. S. Tetrahedron Lett. **2008**, *49*, 411.
- General procedure: To a solution of allenylamine 1 (0.50 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added a copper salt (0.0025 mmol, 5.0 mol %), and then the mixture was stirred at ambient temperature. After addition of aqueous saturated Na2CO3 solution, the mixture was extracted with ether  $(2 \times 10 \text{ mL})$ , dried over anhydrous MgSO<sub>4</sub> and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography. Spectroscopic data of **3a** and **3n** (<sup>1</sup>H, <sup>13</sup>C NMR) were in good agreement with those reported (Katrizky, A. R.; Yao, J.; Yang, B. *J. Org. Chem.* **1999**, *64*, 6066). <sup>1</sup>H NMR data of other products (500 or 600 MHz, CDCl<sub>3</sub>) δ: 2b, 7.10-7.95 (m, 10H), 5.85 (d, J = 4.5 Hz, 1H), 5.72 (d, J = 4.5 Hz, 1H), 4.61 (br s, 1H), 3.97 (d, J = 13.5 Hz, 1H), 3.75 (dd, J = 4.5, 14.0 Hz, 1H), 3.55 (d, J = 13.5 Hz, 1H), 3.75 (dd, J = 5.5, 14.0 Hz, 1H); **2h** 6.90–7.50 (m, 15H), (for anit, dl) 5.97 (br s, 1H), 4.98 (br s, 1H), 3.73 (d, J = 14.5 Hz, 1H), 3.25 (d, J = 14.5 Hz, 1H), (for syn, meso) 5.68 (br s, 1H), 4.85 (br s, 1H), 3.82 (s, 2H); **2i** 7.10–7.50 (m, 10H), 1.10–1.70 (m, 10H), 0.88 (t, *J* = .2 Hz, 3H), (for major) 5.72 (br d, *J* = 6.0 Hz, 1H), 5.58 (br d, *J* = 5.4 Hz, 1H), 4.68 (dt, *J* = 4.8, 2.4 Hz, 1H), 3.92 (d, *J* = 13.8 Hz, 1H), 3.82 (m, 1H), 3.80 (d, J = 13.8 Hz, 1H), (for minor), 5.97 (br d, J = 6.6 Hz, 1H), 5.81 (br s, J = 6.0 Hz, 1H), 4.79 (d, J = 5.4 Hz, 1H), 3.69 (m, 1H), 3.81 (d, J = 14.4 Hz, 1H), 3.49 (d, J = 14.4 Hz, 1H); **2j**, 6.90–7.40 (m, 10H), 5.73 (br s, 1H), 5.52 (br s, 1H), 4.80 (br s, 1H), 3.91 (t, J = 5.5 Hz, 1H), 3.61-3.83 (m, 3 H), 3.58 (dd, J = 6.8, 9.6 Hz, 1H), 3.15 (s, 3H); **2k**, 7.10–7.45 (m, 15H), 6.31 (dd, J = 2.5, 4.0 Hz, 1H), 5.04 (br s, 1H), 3.83 (d, J = 13.0 Hz, 1H), 3.82 (ddd, J = 1.5, 5.5, 14.0 Hz, 1H), 3.62 (d, J = 13.0 Hz, 1H), 3.55 (ddd, J = 1.5, 4.0, 14.0 Hz, 1H); 2l, 7.41 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 5.80 (d, J = 3.5 Hz, 1H), 5.56 (d, J = 3.5 Hz, 1H), 4.66 (br s, 1H), 3.84 (dd, J = 5.5, 14.5 Hz, 1H), 3.57 (dt, J = 14.5, 3.0 Hz, 1H), 2.86 (hept, J = 6.0 Hz, 1H), 0.99 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.0 Hz, 3H); **3f**, 7.04–7.42 (m, 10H), 5.86 (ddd, J = 6.9, 10.3, 17.2 Hz, 1H), 5.12 (d, J = 17.2 Hz, 1H), 4.97 (d, J = 10.3 Hz, 1H), 3.76 (d, J = 10.9 Hz, 1H), 3.74 (m, 1H), 3.45 (d, J = 10.9 Hz, 1H), 2.75 (ddd, *J* = 1.7, 6.9, 12.6 Hz, 1H), 2.25 (dd, *J* = 9.2, 12.6 Hz, 1H); **3g**, 7.18–7.34 (m, 5H), 5.61 (dt, J = 14.9, 6.9 Hz, 1H), 5.38 (dd, J = 8.0, 14.5 Hz, 1H), 4.04 (d, J = 13.2 Hz, 1H), 3.02 (d, J = 13.2 Hz, 1H), 2.92 (t, J = 8.1 Hz, 1H), 2.72 (q, J = 8.0 Hz, 1H), 2.02–2.10 (m, 3H), 1.93 (m, 1H), 1.57–1.80 (m, 3H), 1.36–1.47 (m, 2H), 0.91 (t, J = 7.5 Hz, 3H).

- 11. Preparation of allenylamines: Allenylamines **1a**, **1c**-**f**, **1m** and **1n** were prepared from the corresponding terminal alkynes by treatment with  $(CH_2O)_n$ ,  $(i-Pr)_2NH$  and Cul. See Refs. 2–6. Compounds **1b** and **1h**-e were synthesized from imines through the reaction of the corresponding  $(\eta^2-\text{imine})Ti(O-i-Pr)_2$  complexes with propargyl compounds. See: Fukuhara, K.; Okamoto, S.; Sato, F. *Org. Lett.* **2003**, *5*, 2145. For synthesis of **1g**, see Ref. 2b.
- Production of 2b from 1b by the reaction with 5 mol % of Cul in the presence of CaH<sub>2</sub> (10 mol %) as a proton scavenger could rule out the possibility of the role of a proton as an actual catalyst.